
Topological Data Analysis
Persistent Homology

Your Science Luxembourg
Mathematical Consulting

2024

Your Science Luxembourg | Mathematical Consulting 2

Contents

1 What is Topological Data Analysis? 2

2 Intuitive Introduction to Homology 2

3 Persistent Homology: A Primer 5

4 Persistent Homology: An Example 12

1 What is Topological Data Analysis?

Topological Data Analysis (TDA) is a mathematical framework that applies
topological tools to analyze the structure and shape of complex datasets. It
identifies key topological features of a data point cloud, such as connected
components, loops, and voids, unveiling hidden patterns and offering valu-
able insights into the geometric properties inherent in the data.

One of the main techniques in TDA is Persistent Homology. It adapts the
concept of homology from algebraic topology to identify features in a data
cloud that persist as we zoom out of the cloud. The general assumption is
that features persisting over prolonged zooming iterations are genuine, while
those vanishing swiftly are considered noise.

Persistent homology is the core of these notes and will be elaborated upon
in the next sections.

2 Intuitive Introduction to Homology

Imagine a network of pipes used for transporting fluids. Corrosion can
create holes and potentially even separate previously connected pipe seg-
ments.

In this situation, the specific geometry of the network is largely inconse-
quential. What truly matters are the leaks in the network – its connected

Your Science Luxembourg | Mathematical Consulting 3

components and the holes within the pipes.

To mathematically explore connected components, holes, and voids, we
start approximating the pipe network through a triangulation, as depicted in
the toroidal pipe shown in the following figure.

Figure 1: A triangulation of a torus

The next, more complex triangulation is not limited to triangles, also
known as 2-dimensional simplices, but also includes a tetrahedron, referred
to as 3-simplex, line segments or 1-simplices, and points or 0-simplices.

Figure 2: A simplicial complex

In the present context, it’s important to note that 2-simplices (triangles),

https://commons.wikimedia.org/w/index.php?curid=30856793
https://commons.wikimedia.org/w/index.php?curid=7937755

Your Science Luxembourg | Mathematical Consulting 4

3-simplices (tetrahedra), et cetera, are always considered solid shapes. Oth-
erwise, we talk about an empty triangle or tetrahedron, or about the edges
of a 2-simplex and the faces of a 3-simplex. Finally, the more complex trian-
gulation depicted in Figure 2, composed of simplices of various dimensions,
is referred to as a simplicial complex.

The mathematical toolkit we apply to this simplicial complex begins con-
sidering all 1-chains, i.e., all possible chains (in the common sense of the
word) of 1-simplices (line segments). Within this set, it computes those 1-
chains that are cycles, these 1-cycles being of course essentially made of the
three edges of a triangle (see Figure 2). Subsequently, the tool eliminates
the 1-cycles that are boundaries: in other words, it views 1-cycles that are
boundaries of a triangle (a solid triangle, a green triangle in Figure 2) as ho-
mologs of zero. Hence, the 1-homology of the simplicial complex in Figure
2 corresponds to the sole 1-cycle that does NOT qualify as a boundary, i.e.,
to the loop surrounding the hole situated in the bottom-right corner of the
complex.

Similarly, the 2-homology detects the 2-holes, such as the void or cav-
ity that would manifest if the 2-cycle represented by the four faces of the
tetrahedron contained no interior.

Additional Insights

The reader may already have observed that the cycles are the chains with-
out boundary (do not confuse: a cycle can be a boundary, yet it does not pos-
sess a boundary itself). For example, if a 2D creature resides within the four
faces of a tetrahedron, it can move freely without encountering any bound-
ary: therefore, the 2-chain of these four faces is a 2-cycle, as previously
asserted and intuitively evident. Similarly, a 1D being dwelling solely on the
three edges of a triangle also experiences a boundless environment: hence,
the 1-chain of these edges is a 1-cycle, as already well-known. Furthermore,
since a 0-simplex or point lacks a boundary (otherwise, it would resemble a
small disc), all points are considered 0-cycles. In 0-homology, akin to higher
homologies, two 0-cycles, essentially points, are deemed homologous and

Your Science Luxembourg | Mathematical Consulting 5

are identified, if they form the boundary of a chain of line segments. Con-
sequently, in 0-homology, all points within the same connected component
of the simplicial complex are identified. Thus, for the simplicial complex de-
picted in Figure 2, the 0-homology comprises two elements, corresponding
to the two connected components of the considered simplicial complex. ■

Finally, homology is a mathematical tool, which identifies hole-like struc-
tures in a simplicial complex or a topological space that the complex approx-
imates. In summary, the 0-homology group H0 determines the connected
components, the 1-homology group H1 identifies the loops around holes, the
2-homology group H2 recognizes the cavities, and so forth in higher dimen-
sions.

3 Persistent Homology: A Primer

Imagine a dataset representing the distribution of stars in a region of the
night sky, with known distances between them. Initially, the stars may seem
randomly scattered, but there’s a suspicion of underlying patterns, such as
clusters or voids.

If we start connecting stars that are close together (say, within a cer-
tain distance threshold ε1), the resulting line segments begin to form simple
shapes like triangles or tetrahedrons, building a simplicial complex. Now, if
we slowly increase the distance threshold (let’s call the new value ε2 , with
ε2 > ε1), the complex changes. For example, if there were six connected com-
ponents at ε1, there might be only two at ε2 . However, if the initial compo-
nents were widely separated, forming ‘truly distinct’ entities, a significantly
higher threshold (ε3 ≫ ε2) may be needed for them to connect. In such cases,
the initial connected components persist over a broader range of thresholds.
This persistence across thresholds helps us distinguish between true fea-
tures of the data, which persist over a broad range, and noise-like features
that vanish quickly.

Your Science Luxembourg | Mathematical Consulting 6

Figure 3

Figure 4

Your Science Luxembourg | Mathematical Consulting 7

Figure 5

Figure 6

Your Science Luxembourg | Mathematical Consulting 8

While the previous figures depict the transformation of the simplicial com-
plex as the threshold increases, the question arises as to what set of rules
we have applied to construct the successive simplicial complexes?

Let’s imagine a scenario where we have 3D data points that together form
a certain shape, such as a torus, but without us knowing that. One approach
to revealing this unknown shape is to thicken the data points into balls, as
depicted in the next figure, represented in a 2D scenario for simplicity. If our
3D data set contains a sufficient number of points distributed over the torus,
the union of these small balls would be very similar to the torus. Computing
the homology of this union would then reveal the topological features of a
torus and thus decipher the toroidal shape of the data cloud considered.
However, we can only compute the homology of a simplicial complex. The fol-
lowing figure illustrates the construction of such a complex in the 2D setting
from the considered balls, which we interpret as closed balls with a diameter
of ε1 centered at the data points.

Figure 7: Čech Complex

The procedure for constructing the green simplicial complex in Figure 7 is
applicable for every point cloud in a space where distance can be measured
between points. Indeed, the availability of a notion of distance means that

Your Science Luxembourg | Mathematical Consulting 9

we can define the concept of a ‘ball’, which is the set of points whose distance
to the center is at most the radius, in our case 1

2
ε1. In the following precise

description of the procedure, the text between square brackets pertains to
concrete spaces such as the standard ambient space.

Every point of the cloud is, of course, a 0-simplex. Two (different) points
form a 1-simplex [i.e., are connected by a line segment] if the intersection of
the two associated balls is not empty [i.e., if the distance between the two
points is at most ε1]. Three points form a 2-simplex [i.e., are the vertices of a
(solid) triangle] if the intersection of the three associated balls is not empty.
Four points form a 3-simplex [i.e., are the vertices of a (solid) tetrahedron] if
the intersection of the four associated balls is not empty. More generally, k

points form a (k − 1)-simplex if the intersection of the k associated balls is
not empty.

Note that for three points to be connected by a (solid) triangle, the require-
ment is that the three balls share at least one common element, as illustrated
in the left-hand side (LHS) scenario in Figure 7. In the right-hand side (RHS)
scenario, this condition is not met. However, the balls associated with every
pair of the three points intersect, establishing each pair as a 1-simplex. In
the LHS case, the three faces of the triangle constitute a 1-cycle and this
1-cycle is the boundary of a 2-simplex. In the RHS case, we encounter a
1-cycle that is not the boundary of a 2-simplex.

The simplicial complex we have just constructed is referred to as the Čech
Complex of the data point cloud at threshold ε1 . As we increase the thresh-
old, the Čech complex undergoes changes (see Figures 3, 4, 5, 6), conse-
quently affecting its homology. A glance at Figure 7 reveals that the homol-
ogy (connected components, holes, et cetera) of the Čech complex mirrors
that of the union of balls we must compute (as mentioned above). However,
determining the Čech homology is computationally intensive, necessitating
checks for intersections of intersections of balls (for example, in the RHS
case, the intersection of the three pairwise intersections of balls is empty,
while in the LHS case, it is not). Hence, it is advantageous to substitute the
Čech complex of the cloud with another, simpler complex, which is defined

Your Science Luxembourg | Mathematical Consulting 10

similarly, except that we replace the intersection of the k associated balls
with the pairwise intersections:

A subset of k points from a point cloud forms a (k − 1)-simplex if the
pairwise intersections of the associated balls for these k points are non-empty
[i.e., if the pairwise distances between the points are at most ε1].

This simplicial complex is known as the Vietoris-Rips Complex (VR Com-
plex) of the data cloud. The distinction from the Čech complex becomes
apparent in the RHS scenario depicted in Figure 7: while the intersection of
the three balls is empty, their pairwise intersections are not. Consequently,
in the VR complex, the three points form a 2-simplex and are connected by
a (solid) triangle, just as in the LHS scenario.

Figure 8: A Vietoris-Rips complex

Hence, in the Čech complex, the faces of this RHS triangle constitute a
1-cycle that is not a boundary, so that it survives in the Čech homology.
Conversely, in the VR complex, this 1-cycle is a boundary and is thus disre-
garded in the VR homology. While the Čech homology, as mentioned earlier,
is ideal for capturing the desired topological features, it is computationally

https://commons.wikimedia.org/w/index.php?curid=2671942

Your Science Luxembourg | Mathematical Consulting 11

intractable. In contrast, VR homology offers a computable approach, but it
may not perfectly capture the exact homology we seek. Despite this, the VR
homology serves effectively the purpose of capturing the primary topological
characteristics of the data. Read on to find out why!

Figure 9: Persistence Diagram

In Figure 9, the (colored) points encode the appearance threshold (hori-
zontal coordinate of the point considered) and disappearance threshold (ver-
tical coordinate) of a topological feature (blue points: connected components;
orange points: holes; green points: cavities) within the underlying 3D data
point cloud (see, for instance, Figures 3, 4, 5, and 6). Points located on the
diagonal exhibit identical birth and death thresholds, indicating the corre-
sponding feature vanishes immediately after formation. Those situated close
to the diagonal perish soon after their inception, lacking persistence across
a broader range of thresholds, thus failing to represent genuine topological
features, as previously noted. However, there exist one blue, two orange, and
one green point distanced from the diagonal, thus enduring across a wide
spectrum of thresholds, and consequently, characterizing authentic topolog-
ical features. Specifically, the data cloud underlying the persistence diagram
in Figure 9 contains 1 connected component, 2 holes, and 1 cavity.

Your Science Luxembourg | Mathematical Consulting 12

As already mentioned, in our persistence diagram, the blue (resp., orange,
green) points represent connected components (resp., holes, cavities), i.e., 0-
cycles (resp., 1-cycles, 2-cycles) that are not boundaries. More precisely, they
represent cycles in the 0-homology (resp., 1-homology, 2-homology) of the VR
complex of the underlying cloud. As previously said, our primary interest
should lie in the homology of the Čech complex of the data cloud. However,
the salient aspect pertains to points far removed from the diagonal within
the persistence diagram of the complex. It can be shown that the persistence
diagrams of both complexes are quite similar, rendering it sufficient to utilize
the homology of the computationally less demanding VR approximation of
the Čech complex.

4 Persistent Homology: An Example

A leading tire manufacturer specializes in producing tires for heavy-duty
machinery such as construction equipment, mining vehicles, and agricul-
tural machinery. These tires are notably larger than standard automotive
tires, necessitating meticulous inspection to guarantee safety, optimal per-
formance, and extended durability.

Figure 10: Two-Joint Robotic Arm

Your Science Luxembourg | Mathematical Consulting 13

Figure 10 illustrates the two-joint robotic arm utilized for comprehensive
tire quality assessment. The inner joint on the elongated arm facilitates hor-
izontal rotation, while the outer joint on the shorter arm enables vertical ro-
tation. This configuration empowers sensors at the short arm’s end to scan
the entire interior surface of the tire, monitoring various quality parameters.

The following figure depicts the locations where the robot conducted in-
spection measurements. It is evident that the resulting data point cloud
exhibits a toroidal topology.

Figure 11: Data Points on the Torus

Consequently, computing its persistence diagram through the homology
computation of its VR complex at various thresholds should reveal 1 con-
nected component, 2 holes, and 1 cavity that persist across a broader range
of thresholds. This persistence diagram is actually the one depicted in Fig-
ure 9. We include it again below for the reader’s convenience. It clearly
demonstrates the requisite features, thus confirming the effectiveness of the
VR simplicial complex, persistent homology, and the persistence diagram in
fulfilling their intended purpose.

Your Science Luxembourg | Mathematical Consulting 14

Figure 12: Persistence Diagram

Below is the Python code responsible for generating the 1000 data points
distributed on the torus of Figure 11. It also computes the associated VR
complexes and the persistence diagram in Figure 12. We have included com-
prehensive explanations, particularly aimed at readers who may be new to
Python.

1 # Import the numpy library as np (numpy is the library for numerical
computing in Python)

2 import numpy as np
3

4 # Import the pyplot module from the matplotlib library as plt (
matplotlib is a plotting library whose name recalls that it was
initially developed to replicate MATLAB ’s plotting capabilities;
pyplot is a module within matplotlib that provides a simplified
interface for creating 2D plots using Python)

5 import matplotlib.pyplot as plt
6

7 # Import the Axes3D class from the mpl_toolkits.mplot3d module (
mpl_toolkits is an extension of matplotlib; mplot3d is a module
within this extension for creating 3D plots; Axes3D is a class from
this module used to create 3D axes)

Your Science Luxembourg | Mathematical Consulting 15

8 from mpl_toolkits.mplot3d import Axes3D
9

10 # Import the Circle class from the matplotlib.patches module (
matplotlib.patches is a module within matplotlib that provides
various shapes and patches; Circle is a class from this module used
to create circles and circular arcs in matplotlib plots)

11 from matplotlib.patches import Circle
12

13 # Import the ripser function from the ripser library (ripser is a
Python library used for computing persistent homology of point
clouds , and the ripser function is one of its crucial components;
the name ripser reflects the use of the Vietoris -Rips complex in
persistent homology computations)

14 from ripser import ripser
15

16 # Import the plot_diagrams function from the persim library (persim
provides functions for visualizing persistence diagrams;
plot_diagrams is such a function)

17 from persim import plot_diagrams
18

19 # Disable LaTeX rendering in matplotlib (plt.rcParams is an interface
within the matplotlib.pyplot (plt) module that provides access to
matplotlib ’s default settings for various plot parameters , such as
line widths , colors , ... ; rc means that the parameters can be
configured at runtime; the following code line disables the use of
LaTeX for rendering text in plots)

20 plt.rcParams[’text.usetex ’] = False
21

22 # Define a function that generates a dataset on a torus (the following
function generates random parameter pairs (phi , theta) that define
points on a torus; using the toroidal formula , it computes the

Cartesian coordinates (x, y, z) of these points , storing them in a
numpy (np) array; np.random.uniform () is a function call within the
np.random module in np; ’uniform ’ means that every value within a

defined range has an equal probability of being generated; when
evaluated at (x, y, z) the np function np.column_stack takes the 1
x num_samples arrays x, y, and z and stacks them together as
columns to form a new num_samples x 3 array)

23 def generate_torus_dataset(num_samples , tube_radius ,

Your Science Luxembourg | Mathematical Consulting 16

distance_center_to_hole):
24 theta = np.random.uniform(0, 2*np.pi, num_samples)
25 phi = np.random.uniform(0, 2*np.pi , num_samples)
26 x = (distance_center_to_hole + tube_radius * np.cos(theta)) * np.

cos(phi)
27 y = (distance_center_to_hole + tube_radius * np.cos(theta)) * np.

sin(phi)
28 z = tube_radius * np.sin(theta)
29 return np.column_stack ((x, y, z))
30

31 # Define a function that creates a figure containing two subplots , one
showing a torus and the other displaying data points on the torus

(the value fig of the function plt.figure in the module plt is a
figure window of width 18 units and height 8 units)

32 def plot_torus_standard_view(torus_data , tube_radius ,
distance_center_to_hole):

33 fig = plt.figure(figsize =(18, 8))
34

35 # Create a subplot showing a torus surface (the subplot code adds
to the figure window a grid layout with 1 row and 2 columns , the
subplot being addressed is in position 1, and the subplot uses a 3D
projection; the np function np.linspace generates arrays of evenly
spaced numbers; the function ax.plot_surface plots a surface

within the subplot ax; alpha is a transparency parameter , the last
two parameters fix the row and column stride in the plot)

36 ax = fig.add_subplot (1, 2, 1, projection=’3d’)
37 num_points = 100
38 theta , phi = np.meshgrid(np.linspace(0, 2 * np.pi , num_points), np

.linspace(0, 2 * np.pi , num_points))
39 x = (distance_center_to_hole + tube_radius * np.cos(theta)) * np.

cos(phi)
40 y = (distance_center_to_hole + tube_radius * np.cos(theta)) * np.

sin(phi)
41 z = tube_radius * np.sin(theta)
42 ax.plot_surface(x, y, z, color=’skyblue ’, alpha =0.5, rstride=5,

cstride =5)
43

44 # Scatter data points on the torus (the torus_data will be
generated later as a num_samples x 3 array using the

Your Science Luxembourg | Mathematical Consulting 17

generate_torus_dataset function above; s is the size of the points;
the function ax.view_init allows us to set the two viewing angles)

45 ax.scatter(torus_data [:, 0], torus_data [:, 1], torus_data [:, 2],
color=’red’, s=20)

46 ax.view_init(azim=30, elev =30)
47 ax.set_title(’Torus and Data Points ’)
48 ax.set_xlabel(’X’)
49 ax.set_ylabel(’Y’)
50 ax.set_zlabel(’Z’)
51

52 # Set equal scaling for x and y axes and adjust z axis limits (in
the getattr function the f-string contains the name of the
attribute to get retrieved from the subplot ax for dim = x and for
dim = y; the parentheses () at the end of getattr (...) is a method
call , i.e., it executes the method ’s code and retrieves the values
of the attribute; the square brackets [] stores the limits of x and
y in a list , say [[0,1], [1,2]], and np.array transforms this list
into the obvious 2x2 numpy array; the unusual operator *...*2

replicates the list [0,2] with the minimal and maximal values of
the numpy array scaling twice and makes sure we get equal scaling
for the x and y axes; the interval [-3,3] is the scaling for the z
axis; the function call plt.tight_layout () ensures that the plot
fits into the figure area)

53 scaling = np.array([getattr(ax, f’get_{dim}lim’)() for dim in ’xy’
])

54 ax.auto_scale_xyz (*[[np.min(scaling), np.max(scaling)]]*2, [-3,
3])

55

56 plt.tight_layout ()
57 plt.show()
58

59 # Set the parameters required to call the two previous functions
60 num_samples = 1000
61 tube_radius = 1
62 distance_center_to_hole = 5
63

64 # Call the first function defined above to generate the torus data
65 torus_data = generate_torus_dataset(num_samples , tube_radius ,

distance_center_to_hole)

Your Science Luxembourg | Mathematical Consulting 18

66

67 # Call the second function defined above to plot a torus and data
points on it , using the previous parameters , equal x and y axes
scaling , and adjusted z axis range

68 plot_torus_standard_view(torus_data , tube_radius ,
distance_center_to_hole)

69

70 # Compute the Vietoris -Rips complex of the torus data and its homology
at different thresholds , as well as the corresponding persistence

diagram , including H_2 (ripser (...) is a dictionary containing
various features including persistence diagrams)

71 diagrams = ripser(torus_data , maxdim =2)[’dgms’]
72

73 # Plot the persistence diagram (the code creates a figure of 10x5
units and axes inside it; show=True means that the diagram will be
displayed immediately after calling the function; ax is the
parameter that specifies the axes where the diagram will be plotted
)

74 fig , ax = plt.subplots(figsize =(10, 5))
75 plot_diagrams(diagrams , show=True , ax=ax)
76 ax.set_title(’Persistence Diagram (including H_0 , H_1 , and H_2)’)
77

78 # Explicitly call the function plt.show as a fail -safe mechanism to
ensure the plot is displayed even in case of inconsistencies in
your Python environment ’s automatic display settings.

79 plt.show()

You can now execute the previous code in Google Colab or your local
Python environment to generate figures similar to Figures 11 and 12. Due
to the random nature of the data, the generated figures may differ slightly
from those presented in this document. The code may take several minutes
to complete its execution.

	What is Topological Data Analysis?
	Intuitive Introduction to Homology
	Persistent Homology: A Primer
	Persistent Homology: An Example

