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2 Structured Query Language

Orders Table:

In this bookstore’s database, the relationship between the two tables is
represented by the Foreign Key ‘Customer ID’ in the Orders Table referencing
the Primary Key ‘Customer ID’ in the Customers Table.

2.2 SQL Databases and SQL Database Management Sys-
tems

Relational databases, i.e., structured databases with relationships be-
tween tables, are often referred to, for simplicity, as structured databases.
They are also commonly known as SQL databases. Why this name? Special
software is required to query these SQL databases, and this software, sim-
ilar to Python, employs a specific programming language. The terms struc-
tured, query, and language combine to form the name of this programming
language: Structured Query Language (SQL). This name further extends
to the software used to manage these databases, referred to as the SQL
database management system (SQL DBMS), and to the files (the databases)
themselves, which are called SQL databases, as mentioned above.

So, just as you have the Python installation (software), the Python syn-
tax and rules used to write code (coding language), and Python files (PY
files), you also have the SQL DBMSs (software), the SQL query syntax
(coding language), and SQL DBs (e.g., SQL files).

2.3 SQL Editors and Programmatic Access

Before visualizing the previous components schematically, we add one
final actor to the scene. Just as Python software uses Python code, with
code written and executed in Python editors or interfaces like JupyterLab
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or Google Colab, SQL software (SQL DBMS) uses SQL code, with code typ-
ically written and executed in SQL editors, which provide user-friendly cod-
ing interfaces (bridges) between the user and the software. Alternatively,
SQL code can be embedded directly in Python code and executed within a
Python editor.

SQL Code
& Results

Query
Processor

Pre &
Post Data

SQL Editor SQL DBMS SQL Database

Interface Software Files

Figure 2: Workflow with SQL Editor
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Figure 3: Workflow with Programmatic Access

We will start using SQLite, a lightweight SQL DBMS that runs locally
(serverless, self-contained, ideal for single-user environments, and provid-
ing essential functionalities). While SQLite does not include a built-in SQL
editor, it is supported by third-party editors such as DB Browser (graphical
interface) and SQLite CLI (command-line interface). Additionally, it can be
accessed programmatically through libraries like Python’s sqlite3 library
(see Figure 3).
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3 Automated Data Collection and Analysis

2. Data Request and Retrieval Simulation: Use requests.get(url,

auth=(’username’, ’password’)) to send a data request to the Flask
API, which simulates retrieving mock customer data and returns
it to the local application in JSON format (see below).

3. Data Formatting: The local application processes and displays
this data in a DataFrame or CSV file, ensuring compatibility with
production data (see previous subsection).
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Figure 7: Workflow for Real-World CRM Setting
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Figure 8: Workflow for Simulated CRM Setting

3.2.2 Flask Web Framework

Flask is:

• A web framework: A system that provides pre-built components for
building APIs and their corresponding web applications (i.e., applica-
tions accessed via a web browser such as Google Chrome or Microsoft
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3 Automated Data Collection and Analysis

5 # Seaborn is more specialized than Matplotlib , focusing on high -level
statistical data visualization , while Matplotlib provides more

general -purpose plotting tools
6

7 # Step 1: Load production data extracted from an SQL database
8

9 production_data_path = "C:/Users/norbert.poncin/Downloads/
production_data.csv"

10 production_data = pd.read_csv(production_data_path)
11

12 # Step 2: Utilize customer feedback retrieved from the CRM system and
13 # convert satisfaction ratings into a numerical scale
14

15 # Assuming the feedback dataframe `feedback_df ' is already available
and contains `product_id ' and satisfaction ' columns

16

17 satisfaction_map = {"excellent": 5, "good": 4, "satisfactory": 3, "
bad": 2}

18 feedback_df["satisfaction_numeric"] = feedback_df["satisfaction"].map
(satisfaction_map)

19

20 # Step 3: Merge production and satisfaction data on ‘product_id’ and
21 # select only relevant numeric columns for correlation
22

23 merged_data = pd.merge(production_data , feedback_df , on="product_id")
24 numeric_columns = ["temperature", "pressure", "moisture", "thickness"

, "basis_weight", "opacity", "satisfaction_numeric"]
25 correlation_data = merged_data[numeric_columns]
26

27 # Step 4: Compute correlation matrix
28

29 correlation_matrix = correlation_data.corr()
30

31 # Step 5: Plot heatmap
32

33 plt.figure(figsize =(10, 8))
34 sns.heatmap(correlation_matrix , annot=True , cmap="coolwarm", fmt=".2f

")
35 plt.title("Correlation Matrix Heatmap")
36 downloads_path = 'C:/ Users/norbert.poncin/Downloads '
37 correlation_matrix_path = os.path.join(downloads_path , "

CorrMatrProdSatis.png")
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Suggested Tasks

Write another example for each of the Python code structures we have
covered so far, then explore the patterns Indexing, Slicing, and Nested
Structures by imagining a suitable example for each:

• Indexing: Access elements in sequences (e.g., lists, strings) or map-
pings (e.g., dictionaries) using indices or keys.
Structure: list_name[index] or dictionary_name[key].

• Slicing: Extract portions of a sequence by specifying a range of in-
dices, optionally with a step.
Structure: list_name[start:end:step].

• Nested Structures: Combine multiple operations, such as accessing
attributes, methods, or indices, in a single expression.
Structures: object_name.method_name()[index] or dictionary_name[key]

.attribute_name.

Moreover, explore the following Python patterns: try...except...finally
for error handling, if...elif...else for conditional statements, for for
looping, with for context management, and yield for creating generators.
Provide a concise explanation and an example code snippet for each pattern.

4.2 Get Survivors of the Titanic Sinking

Perhaps you would like to explore the following Flask server and API code
in more detail?

1 import pandas as pd
2 from flask import Flask , jsonify , request
3 from functools import wraps
4

5 # I. Creation of the Local Flask Server
6 app = Flask(__name__) # Initialize Flask app
7

8 # II. Loading Titanic Data
9 # Titanic dataset can be downloaded from Kaggle or another open -

source repository
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5 Learning Outcomes
After working through this chapter, the reader should be able to:

• Describe the main layers of the Industrial Data Ecosystem.

• Define SQL, explain the characteristics of SQL code, describe the types
of data typically stored in SQL databases, and explain the concept of
relational database.

• Differentiate between an SQL DBMS, SQL Editor, SQL Database, and
SQL as a language.

• Distinguish between accessing a CRM system and interacting with an
SQL database. Refer to Figures 5, 6 and Figures 7, 8 to support these
explanations.

• Provide examples of two SQL DBMSs, mention their corresponding
Python libraries, and explain the Flask framework, the JSON format,
and the concept of an API.

• Explain the notion of correlation, including correlation coefficients and
matrices, and their relevance in data analysis.

• Apply essential Python code structures to perform tasks introduced in
this chapter.
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