
Applied Analytics
AI & ML for BI & Automation

2. Data Collection
in an Industrial Setting

Your Science
Mathematical Consulting

Prof. Norbert Poncin
2025

Your Science Center: 31, Boulevard Prince Henri, L-1724 Luxembourg

Phone: +352 621 674 917, Email: info@yourscience.eu, Website: yourscience.eu

Business Permit: 10154927, LBR: A44409, VAT: LU35024328

tel:+352621674917
mailto:info@yourscience.eu
https://yourscience.eu

Applied Analytics
AI & ML for BI & Automation

2. Data Collection
in an Industrial Setting

Your Science
Mathematical Consulting

Prof. Norbert Poncin
2025

Your Science Center: 31, Boulevard Prince Henri, L-1724 Luxembourg

Phone: +352 621 674 917, Email: info@yourscience.eu, Website: yourscience.eu

Business Permit: 10154927, LBR: A44409, VAT: LU35024328

tel:+352621674917
mailto:info@yourscience.eu
https://yourscience.eu

Contents
1 Python in the Industrial Data Ecosystem 5

2 Structured Query Language 6
2.1 Relational Databases . 6
2.2 SQL Databases and SQL Database Management Systems 7
2.3 SQL Editors and Programmatic Access 7
2.4 Exercise: Exploring the Chinook Sample Database . . . 9

3 Automated Data Collection and Analysis 13
3.1 Step 1: Integration of production data from an SQL DB 13

3.1.1 Workflow with an SQL DBMS 13
3.1.2 Python and SQL code . 15
3.1.3 Code Output . 19

3.2 Step 2: Customer Data Retrieval from a CRM system . . 20
3.2.1 Workflow with an API . 20
3.2.2 Flask Web Framework . 21
3.2.3 Step 2a: Setting Up a Local Flask API with Authentication 22
3.2.4 Step 2b: Requesting Data from the Flask API 28

3.3 Step 3: Correlation Analysis 32

4 Self-paced Activities 37
4.1 Characteristic Python Code Patterns 37
4.2 Get Survivors of the Titanic Sinking 42

5 Learning Outcomes 46

Pages 5–6 are not part of this preview.

2 Structured Query Language

Orders Table:

In this bookstore’s database, the relationship between the two tables is
represented by the Foreign Key ‘Customer ID’ in the Orders Table referencing
the Primary Key ‘Customer ID’ in the Customers Table.

2.2 SQL Databases and SQL Database Management Sys-
tems

Relational databases, i.e., structured databases with relationships be-
tween tables, are often referred to, for simplicity, as structured databases.
They are also commonly known as SQL databases. Why this name? Special
software is required to query these SQL databases, and this software, sim-
ilar to Python, employs a specific programming language. The terms struc-
tured, query, and language combine to form the name of this programming
language: Structured Query Language (SQL). This name further extends
to the software used to manage these databases, referred to as the SQL
database management system (SQL DBMS), and to the files (the databases)
themselves, which are called SQL databases, as mentioned above.

So, just as you have the Python installation (software), the Python syn-
tax and rules used to write code (coding language), and Python files (PY
files), you also have the SQL DBMSs (software), the SQL query syntax
(coding language), and SQL DBs (e.g., SQL files).

2.3 SQL Editors and Programmatic Access

Before visualizing the previous components schematically, we add one
final actor to the scene. Just as Python software uses Python code, with
code written and executed in Python editors or interfaces like JupyterLab

7

Norbert Poncin © Your Science | Mathematical Consulting

or Google Colab, SQL software (SQL DBMS) uses SQL code, with code typ-
ically written and executed in SQL editors, which provide user-friendly cod-
ing interfaces (bridges) between the user and the software. Alternatively,
SQL code can be embedded directly in Python code and executed within a
Python editor.

SQL Code
& Results

Query
Processor

Pre &
Post Data

SQL Editor SQL DBMS SQL Database

Interface Software Files

Figure 2: Workflow with SQL Editor

Python
Code,

SQL Code,
& Results

Python
Interpreter

Query
Processor

Pre &
Post Data

Python Editor
Python Software SQL DBMS SQL Database

Interface
Software Software Files

Figure 3: Workflow with Programmatic Access

We will start using SQLite, a lightweight SQL DBMS that runs locally
(serverless, self-contained, ideal for single-user environments, and provid-
ing essential functionalities). While SQLite does not include a built-in SQL
editor, it is supported by third-party editors such as DB Browser (graphical
interface) and SQLite CLI (command-line interface). Additionally, it can be
accessed programmatically through libraries like Python’s sqlite3 library
(see Figure 3).

8

Pages 9–20 are not part of this preview.

3 Automated Data Collection and Analysis

2. Data Request and Retrieval Simulation: Use requests.get(url,

auth=(’username’, ’password’)) to send a data request to the Flask
API, which simulates retrieving mock customer data and returns
it to the local application in JSON format (see below).

3. Data Formatting: The local application processes and displays
this data in a DataFrame or CSV file, ensuring compatibility with
production data (see previous subsection).

requests
Library,
Python
Code,

& Results

Python
Interpreter

External
CRM API

CRM
Platform
(Server

or Cloud)

Interface
Software Interface

Software

Figure 7: Workflow for Real-World CRM Setting

requests
Library,
Python
Code,

& Results

Python
Interpreter

Local
Flask API

Mock CRM
(Local Flask

Server)

Interface
Software Interface

Software

Figure 8: Workflow for Simulated CRM Setting

3.2.2 Flask Web Framework

Flask is:

• A web framework: A system that provides pre-built components for
building APIs and their corresponding web applications (i.e., applica-
tions accessed via a web browser such as Google Chrome or Microsoft

21

Pages 22–32 are not part of this preview.

3 Automated Data Collection and Analysis

5 # Seaborn is more specialized than Matplotlib , focusing on high -level
statistical data visualization , while Matplotlib provides more

general -purpose plotting tools
6

7 # Step 1: Load production data extracted from an SQL database
8

9 production_data_path = "C:/Users/norbert.poncin/Downloads/
production_data.csv"

10 production_data = pd.read_csv(production_data_path)
11

12 # Step 2: Utilize customer feedback retrieved from the CRM system and
13 # convert satisfaction ratings into a numerical scale
14

15 # Assuming the feedback dataframe `feedback_df ' is already available
and contains `product_id ' and satisfaction ' columns

16

17 satisfaction_map = {"excellent": 5, "good": 4, "satisfactory": 3, "
bad": 2}

18 feedback_df["satisfaction_numeric"] = feedback_df["satisfaction"].map
(satisfaction_map)

19

20 # Step 3: Merge production and satisfaction data on ‘product_id’ and
21 # select only relevant numeric columns for correlation
22

23 merged_data = pd.merge(production_data , feedback_df , on="product_id")
24 numeric_columns = ["temperature", "pressure", "moisture", "thickness"

, "basis_weight", "opacity", "satisfaction_numeric"]
25 correlation_data = merged_data[numeric_columns]
26

27 # Step 4: Compute correlation matrix
28

29 correlation_matrix = correlation_data.corr()
30

31 # Step 5: Plot heatmap
32

33 plt.figure(figsize =(10, 8))
34 sns.heatmap(correlation_matrix , annot=True , cmap="coolwarm", fmt=".2f

")
35 plt.title("Correlation Matrix Heatmap")
36 downloads_path = 'C:/ Users/norbert.poncin/Downloads '
37 correlation_matrix_path = os.path.join(downloads_path , "

CorrMatrProdSatis.png")

33

Pages 34–41 are not part of this preview.

Norbert Poncin © Your Science | Mathematical Consulting

Suggested Tasks

Write another example for each of the Python code structures we have
covered so far, then explore the patterns Indexing, Slicing, and Nested
Structures by imagining a suitable example for each:

• Indexing: Access elements in sequences (e.g., lists, strings) or map-
pings (e.g., dictionaries) using indices or keys.
Structure: list_name[index] or dictionary_name[key].

• Slicing: Extract portions of a sequence by specifying a range of in-
dices, optionally with a step.
Structure: list_name[start:end:step].

• Nested Structures: Combine multiple operations, such as accessing
attributes, methods, or indices, in a single expression.
Structures: object_name.method_name()[index] or dictionary_name[key]

.attribute_name.

Moreover, explore the following Python patterns: try...except...finally
for error handling, if...elif...else for conditional statements, for for
looping, with for context management, and yield for creating generators.
Provide a concise explanation and an example code snippet for each pattern.

4.2 Get Survivors of the Titanic Sinking

Perhaps you would like to explore the following Flask server and API code
in more detail?

1 import pandas as pd
2 from flask import Flask , jsonify , request
3 from functools import wraps
4

5 # I. Creation of the Local Flask Server
6 app = Flask(__name__) # Initialize Flask app
7

8 # II. Loading Titanic Data
9 # Titanic dataset can be downloaded from Kaggle or another open -

source repository

42

Pages 43–45 are not part of this preview.

Norbert Poncin © Your Science | Mathematical Consulting

5 Learning Outcomes
After working through this chapter, the reader should be able to:

• Describe the main layers of the Industrial Data Ecosystem.

• Define SQL, explain the characteristics of SQL code, describe the types
of data typically stored in SQL databases, and explain the concept of
relational database.

• Differentiate between an SQL DBMS, SQL Editor, SQL Database, and
SQL as a language.

• Distinguish between accessing a CRM system and interacting with an
SQL database. Refer to Figures 5, 6 and Figures 7, 8 to support these
explanations.

• Provide examples of two SQL DBMSs, mention their corresponding
Python libraries, and explain the Flask framework, the JSON format,
and the concept of an API.

• Explain the notion of correlation, including correlation coefficients and
matrices, and their relevance in data analysis.

• Apply essential Python code structures to perform tasks introduced in
this chapter.

46

About the Author
Norbert Poncin is a Luxembourgish mathematician, who was originally

educated as a mathematical analyst and has worked extensively in partial
differential equations (PDEs) at the University of Liège. His Master’s the-
sis focused on the propagation of singularities in boundary value problems
(BVPs) for dynamic hyperbolic systems. Applying the finite element method
(FEM), his subsequent dissertation addressed BVPs for complex elliptic sys-
tems of PDEs. For his doctoral thesis, he explored mathematical quantiza-
tion, while his post-doctoral education at the Polish Academy of Sciences
strongly emphasized theoretical physics and its models.

Norbert has served as a Full Professor of Mathematics at the University
of Luxembourg for more than 25 years and collaborated with more than 25
foreign professors and post-doctoral scholars. He has organized numerous
academic events, notably approximately 10 international research meetings
and over 20 research seminars focusing on theories, frameworks, concepts
and models in Physics and Engineering. Beyond a substantial publication
record in Differential Geometry, Algebraic Topology, and related disciplines,
he has contributed roughly 25 papers to the fields of Mathematical Physics
and Quantum Theory.

He was the leading instructor for over 20 university courses. Spanning
a diverse spectrum of subjects, including mathematical analysis, probabil-
ity theory, inferential statistics, point and solid dynamics, Lagrangian and
Hamiltonian mechanics, mechanics of deformable solids, fluid dynamics,
special relativity, quantum physics, geometric methods in mathematical
physics, and supersymmetric models, his teaching portfolio underscores
his extensive experience in applied aspects of mathematics.

In 2023, Norbert Poncin founded the mathematical consulting agency
Your Science, where he currently serves as director. His primary interests
include data science and artificial intelligence, along with mathematical
modeling and computational science.

