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1 Artificial Intelligence and Machine Learning

– Speech recognition (e.g., voice-to-text)

– Medical diagnosis (e.g., identifying diseases from medical images)

– Natural language processing (e.g., language translation – increas-
ingly DL-driven)

• DL (Deep Learning):

– Autonomous drones

– Advanced game playing (e.g., AlphaGo – a computer program that
plays the board game Go – uses also Reinforcement Learning tech-
niques)

– Generative models (e.g., creating art or music)

Machine Learning and Key Subfields

ML

SML, e.g.,

Random Forests

UML, e.g.,

Isolation Forests

Figure 3: Supervised and Unsupervised ML

In Supervised ML (SML), the model learns patterns from a labeled training
set (a dataset where both input features and their corresponding target val-
ues are known), is evaluated on a labeled test set (whose labels are used only
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two_of_three_matching_clients)
82

83 # Metric 3: Matches for product and region only
84 product_region_matching_clients = cluster_clients[
85 (cluster_clients[dominant_product] == 1) &
86 (cluster_clients[dominant_region] == 1)
87 ]
88 product_region_matches[cluster_id] = len(

product_region_matching_clients)
89

90 # Calculate percentages
91 if total_counts[cluster_id] > 0:
92 exact_match_percentage = (exact_matches[cluster_id] /

total_counts[cluster_id ]) * 100
93 two_of_three_match_percentage = (two_of_three_matches[

cluster_id] / total_counts[cluster_id ]) * 100
94 product_region_match_percentage = (product_region_matches[

cluster_id] / total_counts[cluster_id ]) * 100
95 else:
96 exact_match_percentage = two_of_three_match_percentage =

product_region_match_percentage = 0
97

98 # Print results for this cluster
99 print(f"Cluster {cluster_id }:")

100 print(f" - Total Customers: {total_counts.get(cluster_id , 0)}")
101 print(f" - Exact Matches: {exact_matches.get(cluster_id , 0)} ({

exact_match_percentage :.2f}%)")
102 print(f" - Matches for at least 2 out of 3: {two_of_three_matches

.get(cluster_id , 0)} ({ two_of_three_match_percentage :.2f}%)")
103 print(f" - Matches for Product and Region: {

product_region_matches.get(cluster_id , 0)} ({
product_region_match_percentage :.2f}%)")

Code Output

Cluster 0 Characteristics:

- Dominant Product: Product_Lightweight Papers

- Dominant Region: Region_Europe

- Dominant Season: Season_Spring

18



2 Unsupervised ML – Marketing Strategies

Figure 4

Cluster 0:

- Total Customers: 264

- Exact Matches: 64 (24.24%)

- Matches for at least 2 out of 3: 94 (35.61%)

- Matches for Product and Region: 64 (24.24%)

Cluster 1 Characteristics:

- Dominant Product: Product_Lightweight Papers

- Dominant Region: Region_Africa

- Dominant Season: Season_Winter

Cluster 1:

- Total Customers: 195

- Exact Matches: 12 (6.15%)

- Matches for at least 2 out of 3: 80 (41.03%)

- Matches for Product and Region: 12 (6.15%)

Cluster 2 Characteristics:

19
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- Dominant Product: Product_Filter Papers

- Dominant Region: Region_Asia

- Dominant Season: Season_Summer

Cluster 2:

- Total Customers: 157

- Exact Matches: 13 (8.28%)

- Matches for at least 2 out of 3: 68 (43.31%)

- Matches for Product and Region: 13 (8.28%)

Cluster 3 Characteristics:

- Dominant Product: Product_Botanical Infusion Papers

- Dominant Region: Region_North America

- Dominant Season: Season_Winter

Cluster 3:

- Total Customers: 110

- Exact Matches: 51 (46.36%)

- Matches for at least 2 out of 3: 110 (100.00%)

- Matches for Product and Region: 110 (100.00%)

Cluster 4 Characteristics:

- Dominant Product: Product_Botanical Infusion Papers

- Dominant Region: Region_Africa

- Dominant Season: Season_Autumn

Cluster 4:

- Total Customers: 191

- Exact Matches: 7 (3.66%)

- Matches for at least 2 out of 3: 81 (42.41%)

- Matches for Product and Region: 7 (3.66%)

Cluster 5 Characteristics:

- Dominant Product: Product_Lightweight Papers

- Dominant Region: Region_Europe

- Dominant Season: Season_Summer

Cluster 5:

- Total Customers: 83

20



2 Unsupervised ML – Marketing Strategies

Figure 5: Illustration of Inertia

- Exact Matches: 56 (67.47%)

- Matches for at least 2 out of 3: 83 (100.00%)

- Matches for Product and Region: 56 (67.47%)

Explanations

Elbow Method

The graph in the output plots inertia against the number of clusters, say
k. Inertia (see Figure 5) represents the sum of squared distances between
each data point and the centroid of its assigned cluster, with lower values
indicating tighter, more cohesive clusters. Initially, as k increases, inertia

21
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decreases sharply, but the rate of reduction diminishes as additional clus-
ters contribute little value. The optimal number of clusters is determined
at the elbow point, where the steep decline transitions to a nearly stable de-
crease (see Figure 4). In our case, the optimal number of clusters is k = 6 .

Cluster Analysis

In our artificially generated data, we have encoded four product prefer-
ences by region and season:

1 # Region and Season -Specific Product Preference
2 if region == 'North America ' and season in ['Autumn ', 'Winter ']:
3 product = 'Botanical Infusion Papers '
4 elif region == 'Europe ' and season in ['Spring ', 'Summer ']:
5 product = 'Lightweight Papers '

Observe that the K-Means++ Unsupervised Machine Learning clus-
tering algorithm successfully rediscovered three of the four patterns (see
Cluster 0, 3, and 5 Characteristics), highlighting the algorithm’s effec-
tiveness.

At first glance, the relatively low match percentages of cluster members
matching their Dominant Product, Region, and Season might seem disap-
pointing. However, with 7 products, 5 regions, and 4 seasons creating 140

(Product, Region, Season) triplets grouped into just 6 clusters, i.e., 6 (Dom-
inant Product, Dominant Region, Dominant Season) triplets, the granular-
ity ensures that most clients will not fully match all three dominant features
of their assigned cluster.

K-Means & K-Means++ Clustering Algorithms

K-Means initializes centroids randomly, while K-Means++ selects them
one at a time, tending to place each new centroid farthest from the previ-
ously chosen ones. Points are then assigned to the nearest centroid, and
the mean point of each cluster – computed as the point whose coordinates
are the means/averages of the respective coordinates of the cluster points
– becomes the new centroid. This process repeats until the centroids sta-
bilize.

22



2 Unsupervised ML – Marketing Strategies

Figure 6: Initial cluster formation and first centroid update

Figure 7: Updated clusters after one iteration and second centroid update

23
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Automated Email Campaigns

The following code provides a simplified example of automated targeted
advertisements. It sends tailored discount ads to the first customer in
Cluster 0 or 5, as well as the first customer in Cluster 3, who meet the
dominant product and region criteria. Indeed, customers may be inclined
to purchase during a promotion, even if they typically buy in a different
season. Replace ZZZZZZZZZ with your password. Perhaps you will find it
interesting to explore the code, which utilizes SMTP, MIME, and HTML –
three key technologies for email communication and formatting?

Python Code

1 import smtplib # SMTP: Simple Mail Transfer Protocol
2 from email.mime.text import MIMEText # MIME: Multipurpose Internet

Mail Extensions - standard that extends email formatting to
support text in multiple character sets , attachments , audio , video
...

3

4 # Campaign criteria
5 campaigns = [
6 {
7 "Product": "Product_Lightweight Papers",
8 "Region": "Region_Europe",
9 "Seasons": ["Spring", "Summer"],

10 "Discount": "20%",
11 "Subject": "Exclusive Spring and Summer Discount on

Lightweight Papers!",
12 "Body": """
13 <p>We are excited to offer you an exclusive {discount}

discount on <b>{ product}</b>, available in <b>{ region}</b> this <b
>Spring and Summer </b>.</p>

14 <p>To take advantage of this special promotion , click the
link below for details:</p>

15 <p><a href=" https :// yourscience.eu" target =" _blank">Redeem
Your Discount Here </a></p>

16 """
17 },
18 {

24
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2 Unsupervised ML – Marketing Strategies

To take advantage of this limited-time offer, click the link below

for more details:

Redeem Your Discount Here

Best regards,

Your Mathematical Consulting Team

• Exclusive Spring and Summer Discount on Lightweight Papers!

Dear C0007,

We’re excited to offer you an exclusive 20% discount on Lightweight

Papers, available in Europe this Spring and Summer.

To take advantage of this special promotion, click the link below for

details:

Redeem Your Discount Here

Best regards,

Your Mathematical Consulting Team

2.2 Self-Paced Study: Unsupervised ML – Interactive Vi-
sualization

In the example of the previous subsection, clusters are based on three
features, Product Preference, Region, and Season, which have 7, 5, and 4
possible values, respectively. When one-hot encoded, these features form
therefore a 16-dimensional space (7 + 5 + 4). To visualize the clusters, this
space must be reduced to 2 or 3 dimensions.

Commonly used Unsupervised Machine Learning algorithms for di-
mensionality reduction include Principal Component Analysis (PCA) and
t-Distributed Stochastic Neighbor Embedding (t-SNE).

27
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2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a technique used to compute
new axes in a dataset, called Principal Components (PCs).

Figure 8: Principle Components and Variance

0.

The first principal component (PC1 – in red) captures the direction of
greatest variance in the data, which, as shown in Figure 8, forms in the

28



2 Unsupervised ML – Marketing Strategies

case considered an ellipsoid with clearly distinguishable long, medium, and
short axes, resembling a polished river stone. Each subsequent PC (PC2 –
in violet, and PC3 – in orange) captures progressively less variance. By
projecting the data onto the first two PCs, we can reduce the number of
dimensions from 3 to 2. This allows us to visualize the data on a 2D plane
while capturing most of the variance in the original dataset.

2.2.2 t-Distributed Stochastic Neighbor Embedding

Figure 9: Student’s t-distributions and Standard Normal Distribution

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique
for reducing data dimensionality (e.g., from 16 dimensions to 2 or 3). It
‘projects’ nearby points in the high-dimensional space to nearby points in
a low-dimensional space, while mapping distant points in the high-dimen-

29
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2 Unsupervised ML – Marketing Strategies

61 opacity =0.7
62 )
63

64 # Customize hover information
65 fig.update_traces(marker=dict(size =6), selector=dict(mode='markers '))
66

67 # Add rotation controls
68 fig.update_layout(scene=dict(
69 xaxis_title="t-SNE Component 1",
70 yaxis_title="t-SNE Component 2",
71 zaxis_title="t-SNE Component 3"
72 ))
73

74 # Save and Show the plot
75 fig.write_html("C:/ Users/norbert.poncin/Downloads /3 D_scatter_plot.

html")
76 fig.show()

Code Output

Figure 10: 2D t-SNE Cluster Scatter Plot
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Figure 11: 3D t-SNE Cluster Scatter Plot

Figure 12: Rotated 3D t-SNE Scatter Plot

Figure 13: Zoomed-In 3D t-SNE Scatter Plot

34



2 Unsupervised ML – Marketing Strategies

2.3 Self-Paced Exercise: Unsupervised ML – Purchase Be-
havior

In the code above, we simulated real-world data by embedding industry-
specific patterns:

1 # Encoded Industry-Specific Patterns
2

3 if industry == 'Food & Beverage ':
4 purchase_frequency = np.random.poisson (15)
5 average_expenditure = np.random.normal (300, 50)
6 sales_channels = np.random.choice (['Direct ', 'Distributor '],

p=[0.50 , 0.50])
7 elif industry == 'Pharmaceuticals ':
8 purchase_frequency = np.random.poisson (8)
9 average_expenditure = np.random.normal (700, 100)

10 sales_channels = np.random.choice (['Direct ', 'Distributor '],
p=[0.95 , 0.05])

11 elif industry == 'Industrial Manufacturing ':
12 purchase_frequency = np.random.poisson (10)
13 average_expenditure = np.random.normal (500, 80)
14 sales_channels = np.random.choice (['Direct ', 'Distributor '],

p=[0.75 , 0.25])
15 else: # i.e., industry == 'Retail '
16 purchase_frequency = np.random.poisson (17)
17 average_expenditure = np.random.normal (200, 70)
18 sales_channels = np.random.choice (['Direct ', 'Distributor '],

p=[0.25 , 0.75])

The variable ‘Average_Expenditure’ is modeled as following one of the Gaus-
sian (normal) distributions

N (200, 70), N (300, 50), N (500, 80), or N (700, 100),

depending on whether the customer’s ‘industry’ is Retail, Food & Beverage,
Industrial Manufacturing, or Pharmaceuticals, respectively. Here, the first
parameter in the distribution represents the customers’ mean ‘Average_Ex-
penditure’ (mean of the average expenditures across all customers from the
industry considered), and the second represents the standard deviation of
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a customer’s expenditure from the mean. Thus, our model is a mixture of
Gaussian distributions, also known as a Gaussian Mixture Model (GMM).

Our next goal is to cluster manufacturing data using numerical criteria
such as ‘Average_Expenditure’ or ‘Purchase_Frequency’. While K-Means is
commonly used as a baseline method, Gaussian Mixture Models often per-
form better, provided clustering features follow a Gaussian distribution con-
ditioned on a hidden categorical feature, such as ‘Industry’, in our case.
However, this relationship between industries and specific Gaussian dis-
tributions is typically unknown and must be inferred from the data. Note
finally that the term Gaussian Mixture Model refers not only to the mod-
eling of ‘Average_Expenditure’ but also to the algorithm used for clustering
such data. In other words, a GMM is both a probabilistic model for our
simulated expenditure and an Unsupervised Machine Learning algorithm
commonly applied to probabilistic clustering.

Exercise 3. Write Python code to group data in a DataFrame ‘df’ by ‘Industry’,
perform a Shapiro-Wilk test to assess the normality of ‘Average_Expenditure’
within each industry, and visualize the results using histograms, saving the
plot to the Downloads folder.

A Possible Python Code

1 import pandas as pd
2 import seaborn as sns
3 import matplotlib.pyplot as plt
4 from scipy.stats import shapiro
5 import os
6

7 normality_path = os.path.join(os.path.expanduser('~'), 'Downloads ', '
normality_test.png')

8

9 # Group data by Industry and examine normality
10 industries = df['Industry ']. unique ()
11 variables = ['Average_Expenditure ']
12

13 results = []
14

15 # Perform Shapiro -Wilk test for each variable in each industry

36



2 Unsupervised ML – Marketing Strategies

16 for industry in industries:
17 industry_data = df[df['Industry '] == industry]
18 # If industry = Retail , for example , industry_data contains only

the rows in df that correspond to retail
19 for var in variables:
20 stat , p_value = shapiro(industry_data[var])
21 # Selects in industry_data the column `Average_Expenditure '
22 results.append ({
23 'Industry ': industry ,
24 'Variable ': var ,
25 'Statistic ': stat ,
26 'P-Value ': p_value ,
27 'Normality ': 'Yes' if p_value > 0.05 else 'No'
28 })
29

30 # Convert results to a DataFrame for display
31 normality_results = pd.DataFrame(results)
32 print("Normality Test Results:")
33 print(normality_results)
34

35 # Visualizations: Histograms and KDE plots
36 for var in variables:
37 plt.figure(figsize =(12, 8))
38 sns.histplot(data=df , x=var , hue='Industry ', kde=True , alpha =0.6,

bins =30)
39 plt.title(f'Distribution of {var} by Industry ')
40 plt.xlabel(var)
41 plt.ylabel('Frequency ')
42 plt.tight_layout ()
43 plt.savefig(normality_path)
44 plt.show()

Code Output

Normality Test Results:

Industry Variable Statistic P-Value \

0 Food & Beverage Average_Expenditure 0.997576 0.966780

1 Retail Average_Expenditure 0.990324 0.099753

2 Industrial Manufacturing Average_Expenditure 0.995732 0.729821

3 Pharmaceuticals Average_Expenditure 0.996900 0.916224
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Normality

0 Yes

1 Yes

2 Yes

3 Yes

Figure 14: Shapiro-Wilk Normality Test

Exercise 4. Since ‘Average_Expenditure‘ follows a Gaussian distribution with
parameters specific to each industry, the assumptions of a GMM are satisfied.
Use the ‘GaussianMixture’ class from the ‘sklearn.mixture’ module to cluster
customers into four clusters based on ‘Average_Expenditure‘, and evaluate
the clustering by comparing the predicted clusters to the encoded industry
categories.

38



2 Unsupervised ML – Marketing Strategies

A Possible Python Code

1 from sklearn.mixture import GaussianMixture
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4

5 # GMM clustering based on average_expenditure
6 gmm_exp = GaussianMixture(n_components =4, random_state =42)
7 df['Cluster '] = gmm_exp.fit_predict(df[['Average_Expenditure ']])
8

9 # Cluster characteristics
10 cluster_summary = df.groupby('Cluster ').agg(
11 Mean_Expenditure =('Average_Expenditure ', 'mean'),
12 Mean_Frequency =('Purchase_Frequency ', 'mean'),
13 Modal_Industry =('Industry ', lambda x: x.mode()[0])
14 )
15 print("Cluster Characteristics :\n", cluster_summary)
16

17 # Probability densities of clusters
18 df['Cluster_Probability '] = gmm_exp.predict_proba(df[['

Average_Expenditure ']]).max(axis =1)
19

20 # Visualization
21 plt.figure(figsize =(10, 6))
22 sns.scatterplot(data=df , x='Average_Expenditure ', y='

Purchase_Frequency ', hue='Cluster ', palette='viridis ', alpha =0.7)
23 plt.title('GMM Clustering Based on Average Expenditure ')
24 plt.xlabel('Average Expenditure ')
25 plt.ylabel('Purchase Frequency ')
26 plt.legend(title='Cluster ')
27 plt.savefig(r'C:/ Users/norbert.poncin/Downloads/

gmm_expenditure_clusters.png')
28 plt.show()

Code Output

Cluster Characteristics:

Mean_Expenditure Mean_Frequency Modal_Industry

Cluster

0 734.280667 7.748718 Pharmaceuticals
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1 324.417464 14.778571 Food & Beverage

2 521.920491 9.716981 Industrial Manufacturing

3 191.672308 16.465385 Retail

Figure 15: 2D GMM Scatter Plot

Simplified Marketing Strategy

Our quick exploratory analysis identifies two main customer types:

• Frequent, low-spending customers: Increase their value through
tiered discounts or bundled offers that encourage higher spending per
transaction.

• Infrequent, high-spending customers: Foster engagement with ex-
clusive offers and targeted relationship-building efforts, focusing on
repeat purchase incentives and simplified bulk ordering.

While these insights provide a preliminary framework, a much deeper and
comprehensive analysis is indispensable to develop a robust and actionable
business strategy that addresses real-world complexities.
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2.4 High-Profile Customers

High-profile customers, defined by high ‘purchase_frequency’ and high
‘average_expenditure’, are valuable assets that deserve special attention.
Their unique spending patterns often classify them as outliers. Leverag-
ing the ability of ‘Density-Based Spatial Clustering’ to detect low-density
points allows us to identify these valuable customers.

Figure 16

Density-Based Spatial Clustering of Applications with Noise (DB-
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SCAN) is an Unsupervised Machine Learning algorithm used for density-
based clustering and outlier detection, classifying points into three cate-
gories:

• Core Points: A point is a core point if at least min_samples points (in-
cluding itself) exist within its eps-radius (epsilon-radius).

• Border Points: A point is a border point if it lies within the eps-radius
of a core point but does not have enough neighbors to qualify as a core
point itself.

• Noise Points: Points that are neither core nor border points are labeled
as noise or outliers.

Clusters are formed as follows:

1. Core points within eps-distance of each other are connected to form
the dense regions of a cluster.

2. Border points that fall within the eps-radius of a core point of the clus-
ter are included in the cluster.

DBSCAN is effective at identifying arbitrarily shaped clusters and isolat-
ing outliers. However, it is sensitive to the choice of the parameters eps and
min_samples, which must be carefully tuned to suit the dataset.

Python Code

1 from sklearn.cluster import DBSCAN
2 import numpy as np
3 import pandas as pd
4 import seaborn as sns
5 import matplotlib.pyplot as plt
6

7 # Select features for DBSCAN
8 X = df[['Average_Expenditure ', 'Purchase_Frequency ']]. values
9

10 # Standardize the data to ensure both features are on a comparable
scale

11 from sklearn.preprocessing import StandardScaler
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2 Unsupervised ML – Marketing Strategies

12 scaler = StandardScaler ()
13 X_scaled = scaler.fit_transform(X)
14

15 # Apply DBSCAN
16 dbscan = DBSCAN(eps=0.5, min_samples =2) # Adjust `eps ` and `

min_samples ` as needed
17 dbscan_labels = dbscan.fit_predict(X_scaled)
18

19 # Add the cluster labels to the DataFrame
20 df['DBSCAN_Label '] = dbscan_labels
21

22 # Identify high -profile customers (outliers are labeled as -1 in
DBSCAN)

23 high_profile_customers = df[df['DBSCAN_Label '] == -1]
24 print("High -Profile Customers (Outliers):")
25 print(high_profile_customers [['Customer_ID ', 'Average_Expenditure ', '

Purchase_Frequency ']])
26

27 # Visualize the clusters
28 plt.figure(figsize =(10, 6))
29 sns.scatterplot(
30 x='Average_Expenditure ',
31 y='Purchase_Frequency ',
32 hue='DBSCAN_Label ',
33 data=df,
34 palette='viridis ',
35 alpha =0.7
36 )
37 plt.title('DBSCAN Clustering: High -Profile Customer Detection ')
38 plt.xlabel('Average Expenditure ')
39 plt.ylabel('Purchase Frequency ')
40 plt.legend(title='Cluster ')
41 plt.tight_layout ()
42

43 # Save the figure to the Downloads folder
44 import os
45 downloads_path = os.path.join(os.path.expanduser('~'), 'Downloads ')
46 plt.savefig(os.path.join(downloads_path , '

dbscan_high_profile_customers.png'))
47 plt.show()
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High-Profile Customers (Outliers):

Customer_ID Average_Expenditure Purchase_Frequency

485 C0486 866.91 16

Figure 17: DBSCAN and Outliers

3 Supervised ML – Automated Supply Chain Man-
agement

We encourage readers to explore and implement selected aspects of the
following Research Project on Automated Supply Chain Management.
While full-scale deployment demands expert knowledge and advanced
research skills, engaging with specific components offers a rewarding
challenge that deepens understanding and enhances practical capabili-
ties.

• Demand Forecasting: A combination of statistical methods (e.g., time
series analysis, ARIMA) and machine learning models (e.g., regres-
sion models, GBMs, LSTM networks) analyzes historical data, market
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3 Supervised ML – Automated Supply Chain Management

trends, and external factors (e.g., geopolitical issues, pandemics) to
generate accurate predictions.

• Inventory Automation: A Python-based AI system streamlines inven-
tory management by integrating real-time ERP data and automating
reordering via APIs. It optimizes reorder points and quantities while
handling uncertainties, anomalies, and stockout risks.

• Route Optimization: A tailored Python system enhances standard
software capabilities (e.g., real-time traffic and weather data integra-
tion) by incorporating company-specific constraints (e.g., multi-stop
routing, vehicle limitations). It uses advanced optimization techniques
(e.g., Dijkstra’s algorithm, A*, genetic algorithms, reinforcement learn-
ing) and tools (e.g., NetworkX, Google OR-Tools, TensorFlow), selecting
the best approach based on the problem’s requirements.

• Risk Mitigation: An AI-driven framework detects supply chain risks
(e.g., geopolitical issues, pandemics, natural disasters) and suggests
contingency plans using predictive analytics with Scikit-learn (fore-
casting vulnerabilities), anomaly detection with Isolation Forests/Au-
toencoders (identifying early signs of disruption), and scenario analy-
sis with Monte Carlo simulations (modeling and preparing for potential
disruptions).

• Dynamic Pricing: An AI system adjusts prices in real-time using his-
torical sales data, competitor pricing, and market trends, or even more
subtle criteria like inventory status, demand timing, and customer be-
havior. It employs regression models, decision trees, random forests,
and reinforcement learning to optimize pricing strategies, selecting the
most effective approach, leveraging tools such as Scikit-learn, XG-
Boost (for batch updates), and TensorFlow (for deep learning-based
pricing models) when appropriate.

3.1 Demand Forecasting

While a first test implementation is partially available for the initial as-
pect of the research project, incorporating advanced supervised ML mod-
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els such as GBMs and LSTMs, the subsequent points are only preliminarily
addressed or left entirely to the reader. These aspects can be further devel-
oped by Your Science | Mathematical Consulting upon request.

3.1.1 Real-World Data Generation

Our simulated data from the automotive industry covers a 10-year period
from 2014 to 2024 and is modeled as follows:

1 # Base demand with seasonal highs in April and October and lows in
January and July

2 data['base_demand '] = 1000 + 200 * np.abs(np.sin(np.pi * data['index'
] / 6))

3

4 # Market trend following steady growth , dynamically adjusted by
temporary downturn factors (e.g., pandemics , geopolitical shifts ,
natural disasters)

5 data['actual_demand '] = (data['base_demand '] + data['market_trend '])
* data['pandemic_factor '] * data['geo_factor '] * data['
natural_disaster_factor ']

6

7 # Incorporating real -world variability with random normally
distributed noise

8 data['actual_demand '] += np.random.normal(0, 50, size=len(data))

The ‘actual_demand’ in Month 86, for instance, could be computed as:

86 [(1000 + 175) + 90] ∗ 0.6 ∗ 1 ∗ 0.7− 125 .

3.1.2 Supervised Learning Models

We employ three Supervised Machine Learning models to predict actual
_demand and compare their performance using Root Mean Square Error
(RMSE) as the evaluation metric. The first two models are Linear Regres-
sion and Random Forest. The third is a hybrid model combining a Gradient
Boosting Machine (GBM) – well-suited for handling relatively static data –
and a Long Short-Term Memory (LSTM) network – effective for capturing
dynamic, rapidly changing patterns.
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3.1.3 Stabilizing Data for GBM – Moving Window Average

Here is the Python code for smoothing fluctuations using the Moving Win-
dow Average technique, followed by an illustration of the method:

1 data['moving_avg_3 '] = data['actual_demand ']. rolling(window =3).mean()

Figure 18: Illustration of Smoothing Data via Moving Window Average

The code creates a rolling window of three months, computes the mean of
the actual demand within this window, and assigns the computed average
to the last month of each window. For example, if the actual demand is
[100, 300, 200, 600, 200, 500], the resulting 3-month moving average is [NaN,NaN,

200, 367, 333, 433] , exhibiting smoother variations compared to the original
demand.

Data such as ‘moving_avg_3’ (red curve), ‘base_demand’ (including season-
ality), and ‘market_trend’ are less dynamic compared to ‘actual_demand’ (blue
curve). They are referred to as static data and are particularly well-suited
for our first prediction model, the GBM, which will predict ‘actual_demand’
using these static data as predictors.
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3.1.4 Sequential Data Preparation for LSTM – Lagging

Here is the Python code for creating Lags (French: décalages temporels,
German: Zeitverzögerungen) of the ‘actual_demand’. Below, you will also find
an illustration of the process:

1 lags = 3
2 for lag in range(1, lags + 1):
3 data[f'lag_{lag}'] = data['actual_demand '].shift(lag)
4 data.dropna(inplace=True)

Figure 19: Illustration of Preparing Data via Lagging

Our second prediction model, LSTM, leverages sequential ‘actual_demand’
data. Although ‘base_demand’ and ‘market_trend’ also evolve over time, they
exhibit more structured and predictable variations and are therefore treated
as static features in the present context rather than as sequential inputs.
The LSTM model processes ‘actual_demand’ data using lagged inputs, align-
ing past values at each current time step (e.g., Index 3). This preprocessing
explicitly organizes past observations into a standardized format, ensuring
compatibility with the LSTM’s internal architecture. At each time step, the
model receives the current ‘actual_demand’ value along with a fixed-length
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sequence of past demand values (all those aligned along the vertical at that
step), allowing it to effectively learn temporal dependencies and recurring
demand patterns, including seasonal trends and holiday effects.

3.1.5 Hybrid Model

The strength of a hybrid model is that it combines the advantages of
both of its components, which, for GBM and LSTM, are capturing static
patterns and trends and learning temporal dependencies in sequential data,
respectively. The predictions from both models are then merged using a
weighted average, where the weights are determined based on the relative
importance of each model’s predictions.

Gradient Boosting Machine (GBM)

p2

p3

p1

MSE = 176

MSE = 203

(∇MSE)(p1)

−ε · (∇MSE)(p1)
p1

p2

Figure 20: Gradient Orthogonal to Level Sets in Increasing Direction

In a Gradient Boosting Machine (GBM), the objective is to boost ma-
chine performance by minimizing this model’s Mean Squared Error (MSE).
This is achieved through an iterative process that adjusts the model’s pa-
rameters p in the direction of the negative gradient −(∇MSE)(p1):

p2 = p1−ε · (∇MSE)(p1),

where ε is the learning rate. The negative multiple −ε · (∇MSE)(p1) points
in the direction of the steepest decrease of the MSE . Adding it to p1 yields

49



Norbert Poncin © Your Science | Mathematical Consulting

p2, the new parameter value, which minimizes the MSE as efficiently as
possible. This process is repeated iteratively, updating p step by step, until
the parameter tuple p converges to a tuple pmin , which minimizes the MSE.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) models are specialized neural net-
works designed to capture temporal dependencies in sequential data (e.g.,
seasonal trends or cause-effect relationships). They handle both short-term
patterns (e.g., promotional discounts on cars) and longer-term effects (e.g.,
evolving emission regulations for cars). Unlike standard recurrent neural
networks (RNNs), LSTMs use gating mechanisms to mitigate the vanish-
ing gradient problem, enabling them to retain longer-term dependencies
more effectively than traditional RNNs. While AI assistants and chatbots
also manage both short-term memory (maintaining coherence within in-
dividual responses) and long-term memory (tracking the overall subject
of the conversation) to maintain coherent interactions, they typically rely
on transformer-based architectures rather than LSTMs, using mechanisms
like self-attention and context windows, which efficiently capture both im-
mediate context and conversational history.

Python Code

The following code is quite interesting and deserves the readers attention.

1 import numpy as np
2 import pandas as pd
3 from sklearn.model_selection import train_test_split
4 from sklearn.preprocessing import StandardScaler , MinMaxScaler #

StandardScaler: Z-Score
5 from sklearn.ensemble import GradientBoostingRegressor
6 from sklearn.ensemble import RandomForestRegressor
7 from sklearn.linear_model import LinearRegression
8 from tensorflow.keras.models import Sequential
9 from tensorflow.keras.layers import LSTM , Dense , Input

10
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11 # TensorFlow is a library designed to handle tensors , which are
generalizations of scalars , vectors , and matrices to higher
dimensions , and used in machine learning and deep learning; Keras
is a module , a deep learning API , an interface between the
developper and deep learning frameworks like TensorFlow; models is
a submodule , and Sequential is a class for building neural

networks; LSTM is a class for creating LSTM layers; Dense is a
fully connected layer to compute activation functions , for
instance; Input is a placeholder layer for specifying input shapes
in a model

12

13 from sklearn.metrics import mean_squared_error
14 import matplotlib.pyplot as plt
15 import tensorflow as tf
16

17 # Set reproducibility for TensorFlow
18 # np.random.seed (42)
19 # tf.random.set_seed (42)
20

21 # I. Data Simulation over 10 Years (120 Months) with a Hybrid Model in mind
22

23 months = pd.date_range(start="2014 -01 -01", periods =120, freq='ME') #
'ME' means Month End

24 # date_range is a function of the library pd
25

26 data = pd.DataFrame ({"month": months })
27

28 data['base_demand '] = 1000 + 200 * np.abs(np.sin(np.pi * data['index'
] / 6))

29 # Base demand with seasonal highs in April and October and lows in
January and July

30

31 # Steady baseline growth - increases linearly from 0 to 360 over 120
months

32 data['market_trend '] = np.linspace(0, 360, 120)
33

34 # External factors encoded as multiplicative adjustments , simulating
pandemics , geopolitical issues , etc

35 # np.where(condition , x, y) returns x where the condition is True and
y where it is False

36
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37 data['pandemic_factor '] = np.where ((data['month'] >= '2020 -03 -01') &
(data['month'] <= '2021 -03 -01'), 0.6, 1.0)

38 data['geo_factor '] = np.where ((data['month'] >= '2022 -02 -24') & (data
['month'] <= '2023 -03 -01'), 0.8, 1.0)

39 data['natural_disaster_factor '] = np.where ((data['month'] >= '
2019 -09 -01') & (data['month'] <= '2019 -11 -01'), 0.7, 1.0)

40

41 # Combine to simulate final demand
42

43 data['actual_demand '] = (
44 data['base_demand '] + data['market_trend ']
45 ) * data['pandemic_factor '] * data['geo_factor '] * data['

natural_disaster_factor ']
46

47 # Add noise to simulate real -world data
48

49 data['actual_demand '] += np.random.normal(0, 50, size=len(data))
50

51 # II. Feature Engineering for Gradient Boosting
52

53 # The next code lines correspond to feature engineering for Gradient
Boosting (static features); Gradient Boosting is a supervised ML
model to predict demand based on static features like base_demand
(including seasonality) and market_trend (features , which evolve
slowly in comparison with dynamic/sequential features like
actual_demand); the column 'moving_avg_3 ' contains the 'moving/
rolling average over the last three months ' of the actual_demand ,
computed using .rolling(window =3).mean(). This smooths the data ,
highlighting underlying trends by reducing short -term fluctuations
. For example , if the demand values are [100, 200, 300, 400], the
moving average is [NaN , NaN , 200, 300]. During fine -tuning of the
model we changed 3 to 10.

54

55 data['moving_avg_3 '] = data['actual_demand ']. rolling(window =10).mean
()

56 # rolling () is a method of pandas Series/DataFrame that creates a
rolling window object , and mean() is a method applied to compute
the mean within each window

57 data.dropna(inplace=True)
58

59 # III. Feature Engineering for Long Short-Term Memory Systems
60
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61 lags = 10
62 for lag in range(1, lags + 1):
63 data[f'lag_{lag}'] = data['actual_demand '].shift(lag)
64 data.dropna(inplace=True)
65

66 # For each lag (1 to 10), the actual_demand values are shifted
forward by that number of steps (1 to 10), creating new columns (
lag_1 , lag_2 ,...., lag_10): if you have a time series [100, 200,
300, 400, 500, 600], where 600 is the current value , and apply a
lag of 1, the result will be lag_1:[NaN ,100 ,200 ,300 ,400 ,500]; the
core idea is that shifting past values to the current position
organizes the data in a way that aligns with the LSTM's internal
structure , enabling it to effectively learn and predict temporal
dependencies

67

68 # IV. Splitting Features into Static and Sequential Predictors
69

70 X_static = data[['base_demand ', 'market_trend ', 'moving_avg_3 ']] #
For GBM

71 X_seq = data[[f'lag_{i}' for i in range(1, lags + 1)]] # For LSTM
72 y = data['actual_demand ']
73 # X_static contains smoothed actual demand (moving_avg_3), while

X_seq contains the lags of the actual demand; [[...]] selects
multiple columns from a DataFrame; f-strings allow embedding
variables directly into strings , e.g., f'lag_{i}'.

74

75 # V. Scaling Static and Sequential Features
76

77 scaler_static = StandardScaler () # Mean 0 and standard deviation 1
78 scaler_seq = MinMaxScaler () # Fixed range
79

80 # StandardScaler: Optimal for normally distributed static features;
standardizes data to zero mean and unit variance; MinMaxScaler:
Ideal for time series data; preserves relative magnitudes and
trends by scaling to a fixed range.

81

82 X_static_scaled = scaler_static.fit_transform(X_static)
83 X_seq_scaled = scaler_seq.fit_transform(X_seq)
84 # The choice of scalers aligns with the models ' working mechanisms
85

86 # VI. Splitting Data into Training and Test Sets
87
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88 split_index = int (0.8 * len(data)) # Calculate 80% split index
89 X_train_static , X_test_static = X_static_scaled [: split_index],

X_static_scaled[split_index :]
90 X_train_seq , X_test_seq = X_seq_scaled [: split_index], X_seq_scaled[

split_index :]
91 y_train , y_test = y[: split_index], y[split_index :]
92

93 # VII. Random Forest Regressor
94

95 rf = RandomForestRegressor(n_estimators =100)
96 rf.fit(X_train_static , y_train)
97 y_pred_rf = rf.predict(X_test_static)
98 # models like RF , LR , and GBM don't inherently handle sequential

dependencies , so they are typically trained on static features
rather than lagged data.

99

100 # VIII. Linear Regressor
101

102 lr = LinearRegression ()
103 lr.fit(X_train_static , y_train)
104 y_pred_lr = lr.predict(X_test_static)
105

106 # IX. Gradient Boosting Model
107

108 gbm = GradientBoostingRegressor(n_estimators =100)
109 gbm.fit(X_train_static , y_train)
110

111 # X. Long Short-Term Memory Model
112

113 X_train_seq = X_train_seq.reshape (( X_train_seq.shape[0], X_train_seq.
shape[1], 1))

114

115 # The new X_train_seq is a 3D matrix or tensor , structured in the
format required by the LSTM model; its rows (index [0] in the
array) represent the observations/months/time steps , its columns (
index [1] in the array) correspond to the ten lagged values , and
its depth contains the features used for prediction -- in this
case , only actual_demand; since there is only one feature , the
tensor contains only one slice and actually remains 2D; this setup
ensures that the model receives past actual_demand values as

input while not explicitly including the current actual_demand as
an additional input
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116

117 X_test_seq = X_test_seq.reshape (( X_test_seq.shape[0], X_test_seq.
shape[1], 1))

118

119 # Define LSTM model;
120

121 lstm = Sequential ([
122 Input(shape=( X_train_seq.shape[1], 1)),
123 LSTM (100, activation='relu'),
124 Dense (1)
125 ])
126 lstm.compile(optimizer='adam', loss='mse')
127 lstm.fit(X_train_seq , y_train , epochs =50, batch_size =8, verbose =0)
128

129 # Input(shape =( X_train_seq.shape [1], 1)) selects the lagged demand
from the sequential training data; LSTM (100): An LSTM layer with
100 hidden neurons to learn sequential patterns (see below: NNs);
activation='relu' sets the neuron activation function to be the `
Rectified Linear Unit' activation function (see below: NNs); Dense
(1): `Dense' refers to a fully connected output layer (i.e., a
layer where each neuron receives input from every neuron in the
previous layer), and `(1)' indicates that the output layer
consists of a single neuron , predicting a single value -- the
actual demand for unseen input data; compilation configures the
model by specifying that optimizer='adam' (the Adam optimizer
adapts the learning rate (the factor `epsilon ' in Subsection
Gradient Boosting Machine) for faster convergence), that the loss
function (the function that the model aims to minimize during
training to improve performance) is loss='mse' (Mean Squared Error
); in training , epochs =50 means the model iterates over the
dataset 50 times , with each epoch processing the full training set
in batches; each batch updates the model parameters using

gradient descent , while convergence is typically achieved only
after multiple epochs; batch_size =8 means that training uses mini -
batches of 8 samples at a time; verbose =0 suppresses output logs
during training for cleaner display

130

131 # XI. Predictions from the Hybrid Model
132

133 y_pred_gbm = gbm.predict(X_test_static)
134

135 @tf.function
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136 def predict_lstm(input_data):
137 return lstm(input_data)
138 y_pred_lstm = predict_lstm(X_test_seq).numpy ().flatten ()
139

140 # @tf.function enables TensorFlow 's main strength -- efficient
computation graph execution -- which optimizes performance and
allows parallel processing on Graphics Processing Units (GPUs) and
Tensor Processing Units (TPUs) for deep learning; .numpy ()

converts the TensorFlow tensor output into a 2D NumPy array of
shape (samples , 1), while .flatten () reshapes it into a 1D array
of shape (samples), simplifying the output for comparison with the
true target values during evaluation

141

142 # Combine predictions (weighted average)
143

144 alpha = 0.5 # Weight for GBM
145 beta = 0.5 # Weight for LSTM
146 y_pred_hybrid = alpha * y_pred_gbm + beta * y_pred_lstm
147

148 # XII. Evaluation of the Hybrid Model
149

150 rmse_hybrid = np.sqrt(mean_squared_error(y_test , y_pred_hybrid))
151 print(f"Hybrid Model RMSE: {rmse_hybrid}")
152 rmse_rf = np.sqrt(mean_squared_error(y_test , y_pred_rf))
153 print(f"Random Forest RMSE: {rmse_rf}")
154 rmse_lr = np.sqrt(mean_squared_error(y_test , y_pred_lr))
155 print(f"Linear Regression RMSE: {rmse_lr}")
156

157 # XIII. Visualization
158

159 plt.figure(figsize =(12, 6))
160

161 # Plot actual demand
162 plt.plot(data['month'], data['actual_demand '], label="Actual Demand")
163

164 # Hybrid model plot
165 plt.plot(data['month'].iloc[-len(y_test):], y_pred_hybrid , label="

Hybrid Model Forecast", linestyle='--')
166

167 # Random Forest plot
168 plt.plot(data['month'].iloc[-len(y_test):], y_pred_rf , label="Random

Forest Forecast", linestyle=':')

56



3 Supervised ML – Automated Supply Chain Management

169

170 # Linear Regressor plot
171 plt.plot(data['month'].iloc[-len(y_test):], y_pred_lr , label="Linear

Regression Forecast", linestyle='-.')
172

173 # Add legend and labels
174 plt.legend ()
175 plt.title("Demand Forecasting with Multiple Models")
176 plt.xlabel("Month")
177 plt.ylabel("Demand")
178 plt.savefig("C:/Users/norbert.poncin/Downloads/DemForMulMod.png")
179 plt.show()

Code Output

Hybrid Model RMSE: 111.43207213590364

Random Forest RMSE: 157.5859239456133

Linear Regression RMSE: 129.3843798974777

3.1.6 Neural Networks

Neural networks are composed of layers of neurons – the input layer
(in blue in Figure 21), hidden layers (in orange – only one in Figure 21),
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and the output layer (in green) – connected by weighted edges. These
weights represent the strength of the connections and are adjusted during
training to minimize error. The nodes bh (pink) and bo (red) and the weights
wh and wo represent biases. Neural networks can learn complex patterns
and relationships, making them powerful tools for tasks like classification,
regression, and pattern recognition.

Figure 21: Visualization of a feedforward neural network (FNN)

More precisely, in a neural network, each node computes the weighted
sum of inputs from the previous layer, then adds a bias term, which shifts
the sum before applying an activation function (e.g., Logistic or Rectified
Linear Unit). The activation function transforms this adjusted sum into an
output signal, determining the information passed to the next layer, similar
to biological neurons.

3.1.7 Examples

Example 1
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For example, consider h1 in the hidden layer with inputs i1 = 0.60 and
i2 = 0.80, weights w1 = 0.10 and w4 = 0.25, and bias bh = 1 · wh = 0.20 . The
shifted, weighted input is:

zh1 = w1i1 + w4i2 + bh = 0.10 · 0.60 + 0.25 · 0.80 + 0.20 = 0.46 .

Using the logistic function f(z) = 1/(1 + e−z) as activation function, the
output of h1 is

f(zh1) =
1

1 + e−0.46
≈ 0.613 .

This process works similarly for h2 and h3 . The outputs from the hidden
layer become inputs to the output neuron o , which applies the same steps
with its own weights, inputs, and bias bo = 1 · 0.35 .

Example 2

Consider a neuron in a neural network tasked with determining whether
to send a signal forward, indicating the presence of a feature (e.g., detecting
an edge of a simplified cat contour in an image). The neuron receives inputs
from the previous layer, which are weighted sums of signals (e.g., features
like brightness or color intensity from pixels).

The Rectified Linear Unit (ReLU) activation function transforms the
weighted sum z by outputting ReLU(z) = max(0, z) . If the weighted sum is
positive, the neuron ‘fires’, passing the positive value forward. Otherwise,
the neuron outputs 0, effectively not firing.

This mechanism allows the network to learn complex patterns. Different
neurons can fire under different conditions, enabling the network to detect
a variety of features. The nonlinear nature of activation functions like ReLU
enables the network to model intricate relationships in data, beyond simple
linear correlations.

3.2 Automated Inventory Management

The subsequent phases of the Automated Supply Chain Management Pro-
ject are presented as research activities (Subsections 3.2, 3.3, and 3.4).
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Write Python code to monitor inventory levels in real-time by processing
ERP data or tracking simulated inventory updates via a file system. The
program should analyze stock fluctuations and trigger a red alert when in-
ventory drops below predefined thresholds. Upon detecting a critical stock-
out risk, the system should automatically reorder the product by sending
an email to the seller or using APIs to ensure timely restocking and prevent
disruptions.

For this task, we refer the reader to the following sections:

• Real-time Monitoring and GDPR Compliance in Manufacturing

• Automated File System Watcher and Data Preprocessing Pipeline

• Automated Correlation Testing Every 100 Emails

• Automated Targeted Marketing Campaigns

Note that implementing a file system watcher is simpler compared to
real-time monitoring.

3.3 Route Optimization

We outline the following steps as a simplified research framework for
optimizing delivery routes. The approach provides a structured foundation
but can be adjusted or expanded based on specific requirements and con-
straints.

• Data Collection: Gather real-time traffic, weather, and vehicle GPS
data.

– Real-time Traffic: Use, for instance, the Google Maps API or Open-
StreetMap APIs to fetch traffic data (please check the official doc-
umentation of the Google Maps API and the specific OpenStreet
Map-based services for pricing and free tiers).

– Weather Data: Access APIs like OpenWeatherMap for weather up-
dates (check the official documentation for pricing and free tiers).
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4 Learning Outcomes

After carefully working through this chapter, the reader should be able
to:

• Classify applications into categories of Artificial Intelligence (AI), Ma-
chine Learning (ML), Neural Networks (NNs), and Deep Learning
(DL), and distinguish between Supervised and Unsupervised ML.

• Explain the functioning principles of Neural Networks (NNs), includ-
ing key concepts such as bias terms, activation functions, and the
underlying training mechanisms.

• Model data in a real-world-like manner by using statistical distribu-
tions such as the normal, truncated normal, log-normal, Student’s
t, Poisson, and chi-square distributions, while encoding realistic and
complex patterns.

• Explain and apply dimensionality reduction techniques such as Prin-
cipal Component Analysis (PCA) and t-Distributed Stochastic Neigh-
bor Embedding (t-SNE).

• Solve clustering problems, including Customer Segmentation, High-
Profile Customer Detection, and Tailored Marketing Strategy De-
velopment.

• Identify suitable Machine Learning models for clustering, such as K-
Means, K-Means++, Gaussian Mixture Models (GMMs), and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), and
apply techniques like the Elbow Method for determining the optimal
number of clusters.

• Explain and apply Ensemble Methods such as Gradient Boosting
Machines (GBMs) and Neural Networks (NNs) like Long Short-Term
Memory (LSTM).

• Differentiate between static and sequential features and apply time-
series techniques such as Moving Window Averages and Lagging.
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• Write code to create compelling static and interactive 2D and 3D
visualizations of data.

• Utilize technologies such as SMTP, MIME, and HTML for email com-
munication, formatting, and marketing strategy implementation.

• Independently explore and implement a professional approach to solv-
ing real-world problems in the manufacturing industry.
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